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Abstract

Within the CISM project empirical models serve as baselines against which to monitor the increase in predictive skill

of physics-based numerical codes as they advance. Empirical models also establish a suite of forecast models from

which to evolve toward greater forecast accuracy by incorporating numerical codes as they advance enough to increase

forecast skill. Establishing a suite of forecast models allows the CISM project to contribute results of use to operational

space weather forecasting earlier than might otherwise be possible. Developing a suite of empirical models allows CISM

to address issues of data ingestion early in the project under relatively simple conditions. Out of the data-ingestion

effort has come a technique of probabilistic forecasts, which allows one to ingest information on IMF Bz from solar

data instead of from measurements taken only at the Lagrangian L1 point. To implement the evolution from empirical

to numerical forecast models, CISM has adopted a coupled two-line system of model development, a science-model line

interacting with a forecast-model line.
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1. Roles of empirical models

The primary task of the Center for Integrated Space

Weather Modeling (CISM) is to link together a suite of

numerical codes that integrate the equations of Newton

and Maxwell from the sun to the ionosphere. CISM’s

approach is to take advantage of research by groups

working on the separate links of an unbroken chain of

physics-based models that connects the sun with the

ionosphere—corona, solar wind, magnetosphere, and

ionosphere/thermosphere—and to focus on coupling

these links while at the same time working to improve
e front matter r 2004 Published by Elsevier Ltd.
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them. The goal is to produce a single, integrated,

physics-based numerical model of the solar–terrestrial

system that does for space weather prediction what

general circulation models of the atmosphere do for

tropospheric prediction. They are the underlying,

physics-based research codes on which operational

prediction codes are based.

Why, then, is the CISM project also interested in a

line of empirical models? There are four reasons. As it

undertakes to develop a physics-based, end-to-end

model, the CISM project needs empirical models to

provide baseline predictions against which the skill of its

physics-based models can be measured. Second, empiri-

cal models also serve as starting points from which the

ability to predict space weather parameters can be

improved by incorporating physics-based models as
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Fig. 1. Long-term record of skill in the 36-hour 500-mb

operational forecast over North America from the Numerical

Meteorological Center (now the Environmental Modeling

Center). (From McPherson, 1994.)
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these reach a stage of development at which they give

better predictions than the empirical model they replace.

Third, as the previous statement implies, by initially

adopting and tailoring a suite of empirical models, the

CISM project may be able to produce something of

value to operational forecasting (namely, one or more

improved prediction algorithms of space weather para-

meters) earlier in its life. And fourth, linking together

empirical models allows the CISM project to acquire

experience in dealing with problems associated with

model integration and data ingestion. The following

sections elaborate on these four functions of empirical

models.
2. Empirical models provide baseline predictions to

measure skill

A project such as CISM to develop a set of linked,

physics-based numerical codes capable of predicting

environmental conditions at any place and time

throughout the solar–terrestrial system obviously needs

metrics to tell how well it is performing. To provide

metrics, CISM has adopted an accepted method, which

is to compare the prediction accuracy of the linked

physics-based codes against the corresponding accuracy

of existing data-based algorithms. One such metric that

can then be generated is skill score defined by

Skill score ¼ ð1�MSE=MSEref Þ � 100;

where MSE is the mean-square error in the predictions

of the physics-based codes and MSEref is the mean-

square error in the predictions of the data-based

algorithms, used as a reference. If the MSE of the

physics-based codes is bigger than the MSE of the data-

based algorithms the skill is negative, positive otherwise.

As applied to CISM, the data-based algorithms used to

make the reference predictions are the mentioned suite

of CISM baseline empirical models.

The role of empirical models in providing baselines to

evaluate the performance of CISM’s physics-based

models is the subject of Spence et al. (2004). Here we

wish to focus on the general concept of a ‘‘baseline’’

model. The most important property of a baseline model

is that it never changes. A baseline model must not

improve over time, otherwise it could not serve as a

baseline against which to measure the improvement of

other models. If for some reason a baseline model is

changed or replaced by another in the future, then the

progress of improvement of skill of the physics-based

models would need to be re-evaluated ab initio. As a

corollary, a baseline model need not be the best among

models available even at the time of its adoption, for,

since it may not improve, other models should soon

surpass it anyway. Other factors such as ease of use and

guaranteed availability of data with which to run the
model could be more important than being the most

accurate of current models. Of course, a model chosen

as a baseline should nonetheless be as good as possible

within these considerations.

Fig. 1 illustrates why a baseline model must not

change in time. It shows a plot that gives as a function of

time the skill in the 36-hour forecast of the average

height of the 500mb surface over the US. The forecast in

this case is based on operational, physics-based numer-

ical codes used by the US Weather Service. The plot

starts in 1955, when the Weather Service initiated

operational numerical weather prediction. As measured

by this metric the skill of numerical weather forecasting

in 1955 was around 33%, which was about as good as

was possible with traditional weather map analysis. The

low skill level in 1955 implies that the average error that

the numerical-based forecast made was about 88% of

the average error that the reference algorithm made

(climatology, say). By 1992 (when the plot ends) the

average error in numerical-based forecast had dropped

to about 14% of the average error in the forecast of the

reference algorithm. Obviously by 1992 the success of

the numerical algorithms had greatly diminished the

value of the reference algorithm as a forecasting tool. By

then the reference algorithm was good for little more

than to serve as the standard against which improve-

ment in numerical algorithms could be measured. But

this was an immensely valuable function, because the

reference algorithm’s role as a fixed standard over 40

years had achieved an otherwise impossible result.

Although it had sunk to minimal use as a contemporary

forecast tool, the reference algorithm had allowed

progress in forecast skill to be quantified.

The lesson to be learned from this is that when a data-

based algorithm is chosen for use as a baseline algorithm

for measuring skill, its use as a forecast algorithm per se

becomes irrelevant. Its status in the world of algorithms

has been elevated to a standard. It would instantly lose

its elevated status should it become ‘‘improved’’ since

the sine qua non of a standard is to be frozen in time.

The CISM project has chosen two suites of empirical

algorithms to serve as baseline models. One suite is
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Fig. 2. The suite of CISM baseline science models together with their data sources and prediction parameters.
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meant to monitor the performance of the physics-based

codes as science tools, the other as forecast tools. We list

the former in this section and the latter in Section 4

below. The suite of science baseline models, shown

schematically in Fig. 2, begins at the sun with a coronal

hole index in the form of the ‘‘Potential Field Source

Surface Model’’ (PFSS), which was developed for use as

input to the Wang–Sheeley model (Wang and Sheeley,

1992). Complementary to the coronal hole index is a

white-light streamer belt index, also based on the PFSS.

The PFSS predicts coronal hole boundaries from which

one may infer the regions that should appear dark in

SOHO ultraviolet images of the sun (coronal holes) and

regions that should appear light in SOHO white light

coronagraph images (streamer belts). The coronal hole

and streamer belt indices serve as baseline models to

evaluate the performance of CISM’s physics-based

numerical code that treats the corona (Abbett et al.,

2004) and use a different set of boundary conditions

than PFSS to predict coronal structure.

The skill of the combined corona and solar wind

codes (Odstrcil et al., 2004) will be monitored by

comparison against the Wang–Sheeley–Arge (WSA)

model (Arge and Odstrcil, 2004) using data at the L1

Lagrangian point. The WSA model currently predicts

the speed of the solar wind and the polarity of the

magnetic field. The intention is to augment it with

simple additions that allow it also to predict (albeit

crudely) the density of the solar wind and the strength of

the magnetic field at 1AU. For example, solar wind

density is statistically anticorrelated with solar wind
speed so that their product, which is the mass flux

density, is approximately constant (Schwenn, 1990, p.

143).

The science baseline models omit a model to monitor

the progress of the ability of CISM’s numerical codes to

simulate transient events, among which are the particu-

larly important coronal mass ejections (CMEs). Also

omitted is a model to monitor the progress of the ability

of CISM’s numerical codes to simulate solar energetic

particle events (SEPs). These monitoring functions have

instead been relegated to the forecast baseline models,

described below. The choice of adding baseline CME

and SEP models to the forecast set instead of the science

set was made mainly because of the great relevance that

CME and SEP predictions have to space weather

forecasting. Obviously, however, regardless of which

set they are in, they will play a dual role in base lining

the science models and the forecast models.

Coming closer to Earth, the skill of the magneto-

spheric code (combined Lyon–Fedder–Mobary (LFM)

and Rice Convection Model (RCM), see Toffoletto and

Lyon, 2004) in predicting the location of the magneto-

pause (using an archival data base of magnetopause

crossings) will be tested against the Shue et al. model

(Shue et al., 1997, 1998). For this purpose, data taken by

an L1 monitor (the Advanced Composition Explorer,

ACE) will be propagated to Earth using the Weimer

propagation model (Weimer et al., 2003). The Tsyga-

nenko empirical magnetic field model (Tsyganenko,

1995) will serve as the standard against which to

determine the skill of the combined LFM/RCM code
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by comparing predictions against magnetic field mea-

sured by the GOES satellites at geosynchronous orbit.

In the inner magnetosphere, the skill of the RCM code

operating within the global LFM MHD code to predict

ring current parameters will be measured by reference to

the Magnetospheric Specification Model (MSM) oper-

ating in stand-alone mode. The forecast skill of CISM’s

physics-based electron radiation belt model (Baker et al.,

2004) will be measured by comparing their predictions

against those of an empirical model based on electron

data taken by the CRESS satellite (CRESSELE, Hilmer,

1999). This comparison will use data from the GOES

and LANL geosynchronous orbit satellites.

To measure how well the combined LFM/TING code

(TING stands for Thermosphere–Ionosphere Nested

Grid model; Wiltberger et al., 2004) simulates the

coupling between the magnetosphere and the iono-

sphere, the CISM project will compute a skill score that

uses empirically based Weimer models as baselines. The

Weimer models predict the distribution of the polar cap

potential and field-aligned currents and the shape and

size of the polar cap boundary on the basis of solar wind

and IMF measurements taken at L1 (Weimer, 1996,

2001). The skill of the part of the numerical code that

predicts particle precipitation will be evaluated by

comparing its predictions against those of an empirical

code named Aurora based on a compilation of time-

averaged auroral ion and electron data (Hilmer, 1999).

The comparison will use data from DMSP satellites.

At the extreme, terrestrial end of the sun-to-earth

chain of linked models we find the TING model

predicting pure ionospheric parameters, the heights

and densities at the peaks of the E and F regions. Skill

in this case will be based on reference to the Interna-

tional Reference Ionosphere (IRI) using solar radio

F10.7 intensity and the geomagnetic Kp index.

It will perhaps be useful to repeat here that the version

of any model chosen as a CISM baseline will be

regarded by the CISM project to be fixed in its

algorithmic specification and to be frozen in time. This

will be true even though outside its baseline use in CISM

project each model has a life of its own and will continue

to evolve. In its role as a CISM standard, each model

can be used to monitor its own progress.

To sum up this section, the CISM project needs

empirical models to serve as reference algorithms with

which to monitor the progress of its end-to-end, physics-

based chain of models. Any algorithm chosen for this

purpose changes status from a living, evolvable opera-

tional algorithm, or pretensions thereto, to an un-

changing, non-evolvable standard. A set of empirical

models has been identified that cover key aspects of the

solar–terrestrial environment at each major linking

point in the chain.

To serve as static baseline models, fixed in time as

described in this section, is one function of empirical
models within the CISM project. A different function,

almost the opposite, is to evolve in time, as the next

section describes.
3. Empirical models establish a substructure from which

advanced forecast models can evolve

A major lesson that Fig. 1 can teach a fledgling

environmental field such as space weather that aspires to

match tropospheric meteorology in forecasting skill is

that it is important to begin operational forecasting

using physics-based numerical codes as quickly as

possible. The advent of numerical weather prediction

in 1955 allowed tropospheric weather prediction to

advance much farther in the subsequent 40 years than it

had in the preceding 100 years using techniques of

weather map analysis. Over the 40 years covered in the

plot, numerical weather prediction went from a skill of

33–98%, whereas skill based on traditional weather map

analysis has changed hardly at all. But notice that

progress was gradual. It is not the case that with the

advent of physics-based numerical weather prediction

forecasting skill shot up instantly. In 1955, the two

modes of forecasting—weather map and numerical—

were at about the same skill level. Increase in numerical

forecasting skill accrued slowly through better repre-

sentations of physical processes, more powerful and

faster computers, and better data assimilation techni-

ques. But improvement was driven by operational

demand for greater forecast accuracy. Without contin-

uous feedback between researcher/coder and forecaster,

the researcher/coder would not know where to exert

effort to achieve greatest operational effect. The two

divisions of labor were tightly coupled. Without this

tight coupling even the seemingly slow progress seen in

the figure would not have occurred. To think of

research/coders by themselves ending up with the highly

evolved forecast codes of 1992 without feedback, and so

without guidance or stimulus, is unreasonable.

CISM accepts the lesson that the earlier numerical

codes are pressed into making operational forecasts the

better. But faced with the reality that numerical space

weather codes such as CISM’s are too large to be

imposed suddenly on the Space Environment Center

with all the attendant startup and training overhead,

CISM has adopted a hybrid strategy in which empirical

models play a crucial role. The idea is to adopt a set of

end-to-end (sun-to-earth) empirical forecast models that

give operational, forecast parameters as output. This set

of forecast models then leads two lives, one of which is

to become frozen into an unchanging set of baseline

models like those just described. But here their use is to

monitor improvement in skill in predicting operational

forecast parameters (rather than, as above, parameters

that monitor the codes’ skills in predicting parameters of
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the solar–terrestrial medium of interest to scientists).

The other life of the set of forecast models is to evolve

by incorporating the outputs of the numerical codes,

singly or in combination, as these improve enough

with that, in place of one or more of the empirical codes

that make up the forecast models, they increase

forecasting skill. This selective, one-by-one way of

bringing numerical codes into the forecast models when

they increase skill in the overall forecast reduces demand

on SEC resources for operational forecasting. The

evolution of forecast models is discussed further in

Section 5 below.

The purpose of this section has been to point out that

Fig. 1 has an important lesson for space weather—

initiate numerical forecasting ASAP—and to describe

the strategy that the CISM project has adopted to evolve

toward numerical forecasts from empirical models. The

strategy outlined here puts operational space weather

forecasting on the path toward achieving the benefit of

numerical forecasting that Fig. 1 demonstrates. It has

the additional benefit of providing a suite of forecast

models that can be put into operation in the meantime,

as the next section describes.
4. The CISM suite of forecast models

To define its suite of forecast models, the CISM

project asked the agency in the United States National

Oceanographic and Atmospheric Administration

(NOAA) responsible for space weather warnings and

forecasts, the Space Environment Center (SEC), and its

Defense Department counterpart to provide a list of
Fig. 3. The suite of CISM baseline forecast models togethe
their most used or important forecast parameters. With

few exceptions, concerning mainly the thermosphere and

the equatorial ionosphere, this list has become the suite

of CISM baseline forecast models, which Fig. 3 displays

together with the models’ data sources and forecast

parameters.

The models fall into groups distinguished by their

data sources: a CME prediction model, a solar energetic

particle (SEP) prediction model, an ionosphere-state

prediction model, and a set of models that predict

various magnetic disturbances and the fluxes of relati-

vistic electrons in the radiation belts and at geosynchro-

nous orbit. The CME prediction model is based on the

sun-to-earth propagation model of Gopalswamy et al.

(2001) (based on halo CME speed data) as improved by

Vrsnak and Gopalswamy (2002) and augmented by the

addition of a climatological prediction of Bz orientation

within the CME (Bothmer and Rust, 1997) and an

empirical prediction of CME field strength (Owens and

Cargill, 2002). The SEP prediction model, dubbed

PROTONS in the figure, uses integrated soft X-ray flux

of the initiating event (measured by GOES) together

with the event location and radio sweep data to put the

event into bins that contain predicted values of peak flux

and rise times obtained statistically (Balch, 1999). The

ionosphere state model is the International Reference

Ionosphere (IRI).

As the bottom box in Fig. 3 shows, five models use

solar wind data or IMF data or both as input. The input

data are taken at L1 for short-term forecasts

(o � 1 hour) or, for longer-term forecasts (41 day)

are predicted by the WSA model using solar magneto-

grams as input. The WSA models therefore become both
r with their data sources and prediction parameters.
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a science and a forecast model. At the top of this set of

five models is the Li et al. radial diffusion model that

predicts the flux of relativistic electrons at geosynchro-

nous orbit up to two days in advance (Li et al., 2003).

Below this is the Magnetosphere Relativistic Electron

Forecast (MREF) model of Vassiliadis et al. based on

the AutoRegressive Moving-Average (ARMA) techni-

que (Vassiliadis et al., 2004). The MREF model predicts

relativistic electron fluxes in the radiation belts in three

regions beyond L ¼ 3, also days in advance. Next comes

the Temerin and Li (2002) model for short-term

predictions of the Dst index based on an extension and

refinement of the Burton equation (Burton et al., 1975).

There follows an AutoRegressive exogenous (ARX)

algorithm developed by McPherron (2004) to make 24-

hour forecasts of the Ap and K indexes. The bottom of

the five forecast models that use solar wind/IMF data

as input is the Weigel model for short-term predictions

of the perturbation magnetic field in the auroral

zone and its time derivative (Weigel et al., 2003). The

Weigel model is based on a probability distribution

function derived from 2 years of auroral zone magnet-

ometer data.

The nine models shown in Fig. 3, and possible later

additions, have become CISM’s suite of baseline

forecast models in the strict sense of the meaning

of ‘‘baseline’’ discussed above in Section 2, namely,

forever unchanging. The next section illustrates how the

forecast models in their non-baseline role interact with

CISM’s physics-based numerical codes to evolve toward

the desired goal of an end-to-end numerical forecast

model.
Fig. 4. A schematic to illustrate the two lines of models in the CISM

The steps at the left of the figure suggest that incremental improvemen

forecast line.
5. Interaction between CISM’s science and forecast

models

As mentioned in Section 3, CISM’s strategy for

evolving toward one or more physics-based, numerical

forecast models is to run the forecast models with and

without a numerical model serving as one of their

components and comparing the skill relative to the

baseline models of the two results. When a numerical

model has improved enough that it raises the skill above

that achieved without it, the time has come to

incorporate it into the forecast model. In this way the

numerical models can be brought incrementally,

singly or in combination, into the links of an operating

forecast chain.

To illustrate the strategy Fig. 4 depicts schematically a

line of physics-based, numerical models labeled Science

Models and a line labeled Forecast Models. The

depiction is clearly schematic since, as Figs. 2 and 3

show, in neither case is there a single line. The simplified,

two-line depiction nonetheless serves to illustrate the

point of interest by focusing on just the solar wind link

in the chain. In the initial forecast models, the semi-

empirical WSA model will provide the sun-to-L1 or sun-

to-magnetosphere values of solar wind and IMF

parameters that, as seen in Fig. 3, drive a suite of

models that forecast operational magnetospheric para-

meters. At some point in the development of the Science

Models, the MAS-ENLIL code should begin to provide

values of solar wind and IMF parameters that increase

the skill of forecast models that use them over that

obtained with WSA. Then the MAS-ENLIL code
project (a science line and a forecast line) and their interaction.

ts in the science line result in corresponding improvements in the
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should replace the WSA model as the provider of solar

wind and IMF parameters in the suite of forecast

models. At this point the solar wind-IMF part of the

forecast models will have arrived at the stage of

numerical forecasting where the systematic, incremental

increase in skill realizable in physics-based codes

becomes possible, as suggested by the stepwise rise in

skill on the left side of Fig. 4.

One can identify other replacements besides MAS-

ENLIL replacing WSA that might be possible in the

relatively near future. CME shock arrival time and

strength and post-shock conditions are likely to be

predicted better with physics-based, numerical codes

than with semi-empirical models in the near future.

Somewhat farther out in time the same might be hoped

for solar energetic particles and radiation belt predic-

tions, especially protons. It should be recognized,

however, that some parameters of interest to forecasters,

such as the non-physics-definable quantities Ap and Kp,

are likely to remain better forecast by statistical models

for a longer time.

One envisions, therefore, a protracted period during

which physics-based, numerical codes operate in tandem

with semi-empirical and statistical models to provide the

full suite of parameters that space weather forecasters

need. In other words, it may be necessary for a time to

run an ensemble of model runs that includes pure

empirical algorithms and empirical-numerical hybrid

algorithms. For this reason at the same time that CISM

works to incorporate physics-based, numerical codes

into the chain of forecast models to the extent possible,

it also intends to evolve a complementary suite of semi-

empirical and statistical models as such. This effort

includes developing new forecast products that might

serve the space weather user community better than

products now available. One such effort is the dB=dt

algorithm shown at the bottom of the set of five models

in Fig. 3. It responds to a call from the electrical power

industry for a space weather product more tailored

to their concerns than the Kp or Ap indices (Simpson,

2004).

Since it is intended that the forecast models will see

operational service early in the life of the program, they

will also be the first of CISM’s models to grapple with

issues of data ingestion. The next section illustrates the

challenges in this many-faceted area by describing an

aspect that is unique to the space weather field.
6. Empirical models address the L1 barrier

Forecast models that ingest solar wind and IMF data

taken by L1 spacecraft such as ACE give about a one

hour maximum warning in advance of a coming event.

However, forecast models that ingest solar wind and

IMF data from the WSA model, based on solar
magnetograms, can predict space weather conditions

up to four days in advance. But the WSA model has a

time resolution of about eight hours, which means that

changes faster than this are not predictable. One

quantity that changes faster than this is the north–south

component of the interplanetary magnetic field, which

is, of course, one of the most important space weather

variables. It changes from northward to southward or

vice versa once every 10min on average (approxi-

mately), but with great variations. At any time between

the sun and the earth there are typically 600 north–south

flips of the IMF. Such changes are too rapid for any

technique of ingestion of solar data to follow. Thus,

except for large-scale structures such as IMF polarity

sectors and CMEs where the IMF in the north–south

direction can by ordered on longer scales (by the

Russell–McPherron effect in the case of IMF polarity

sectors), IMF Bz is normally unpredictable beyond the

hour or so available from L1 data. Consequently

forecast models that use IMF Bz as input are likewise

limited to an approximately 1-hour forecast horizon.

To address the ‘‘L1 barrier’’ in IMF Bz ingestion, the

empirical modeling group in the CISM project has

adopted a concept of probabilistic forecasting based on

an analogy to air-mass climatology in meteorology

(McPherron and Siscoe, 2004). The idea is to divide the

solar wind speed profile predicted by the WSA model

into ‘‘air-mass’’ intervals during which IMF Bz has

distinct probability distribution functions (pdfs). These

pdfs can then be used in conjunction with the forecast

models to derive corresponding pdfs for the forecast

parameter, which allows the forecaster to make a

probabilistic forecast for each time interval that has an

identifiable pdf; for example: ‘‘There is a 50% prob-

ability that Ap will exceed 40 during the next 24 hours’’.

McPherron and Siscoe (2004) found that the interface

between solar wind streams divides the solar wind into

distinct air-mass intervals. At a practical level, marking

off one-day time steps before and after the predicted

passage of the stream interface provides intervals with

distinct pdfs for the values of IMF Bz. One is able to

break the L1 barrier in IMF Bz ingestion by going from

deterministic to probabilistic forecasts.

At present probabilistic forecasting falls under the

heading of new products under development. Eventually

it should enter the forecast model chart (Fig. 3) as a

model to be used in conjunction with WSA to cover the

range one hour to three days continuously for most of

the forecast models. Similarly the statistical methods

used by Weigel and Baker (2003) will also be evaluated

for their ability to provide longer lead time forecasts.

This work showed that the probability of rapid

fluctuations in the ground magnetic field can be

characterized by a single heavy-tailed probability

distribution function with a standard deviation that is

strongly dependent on the solar wind velocity and local
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time. Given a 3-hour lead time forecast of the solar wind

velocity, the pdf can be used to estimate the likelihood of

a rapid geomagnetic change as a function of local time in

the next 1-hour interval.
7. Summary

Empirical models are essential complements to the

development of physics-based, numerical models within

the CISM project. They provide baseline models against

which to quantify increase in skill as numerical models

advance. They establish a substructure of forecast

models from which to evolve incrementally in accuracy

and scope by incorporating numerical models as they

advance enough to increase forecast skill. To implement

the evolution from empirical to numerical models,

CISM has adopted a coupled two-line system of model

development, a science-model line interacting with a

forecast-model line. Empirical models allow the CISM

project to impact the world of operational space weather

forecasting earlier than would otherwise be possible by

developing a line of forecast models, which has also

forced an early effort on issues of data ingestion. Out of

this has emerged the technique of probabilistic forecasts

to overcome the L1 barrier to ingesting IMF Bz.
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