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Abstract. Magnetosphere dynamics driven by the solar wind are very complex, 
involving both coherent responses to the extremal loading and multiscale features 
characteristic of critical phenomena. Earlier attempts to explain their complexity 
in terms of dynamical chaos did not take into account the spatially extended 
nature of the system and multiscale coupling. A more consistent description can 
be made using cellular automata models. In particular, the hypothesis of the self-
organized critical state of the magnetosphere, which is based on a certain class of 
cellular automata models, provides a physical basis for the observed power-law 
spectra of magnetospheric activity. However, this is not enough to explain other 
features of this activity such as the characteristic scales of storms and substorms 
and apparent dependence of these phenomena on the solar wind loading. The 
analysis of correlated sets of solar wind and auroral index data suggest a more 
general framework for modeling the magnetospheric activity. It reveals in 
particular both the multiscale processes resembling classical critical phenomena 
in phase transition physics and regular components of dynamics, which resemble 
first order phase transitions. Similar to classical critical phenomena, the 
multiscale properties of substorms depend on the solar wind parameters. Thus, 
the data-derived picture of substorms differs from the self-organized criticality. 
However, it is siuprisingly consistent with a modem theory of critical phenomena 
based on cellular-automata with finite driving and dissipation rates, which 
considers self-organized criticality as a limiting regime of the special type of 
phase transitions in non-equilibrium systems. The new framework is shown also 
to provide efficient tools for predicting both global and multiscale features of 
magnetospheric activity. 

1. Introduction: Data-derived Modeling 

At first sight, such a complex system as Earth's magnetosphere requires very sophisticated 
first-principle modeling tools. An example may be global MHD simulations. However, the use of 
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first-principle models has many limitations. They often require too much computer resources and 
yet remain imprecise, for instance, in determining the timing of the substorm onset. 
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Figure 1. Representation of the magnetosphere in a data-derived approach. Input parameters are 
represented here by the solar wind speed v, southward component of the interplanetary magnetic 
field Bs, and dynamical pressure P ^ , while the output is represented by the auroral indices AL 

and AE reflecting the substorm activity, and the disturbance storm-time index A/-

One can propose another approach to complex system modeling. It is a more pragmatic approach 
without recourse to the tools of classical physics. For instance, although the dynamics of a human 
body can in principle be described in terms of quantum mechanics and electrodynamics, 
physicians and sociologists quite seldom use that type of description in their practice. Let us 
consider instead our system, the magnetosphere, as a black box with some input and output 
(Figure 1) and let us try to create a model of system's dynamics directly from data, using the 
techniques of signal processing, nonlinear dynamics and statistics. This is an empirical or data-
derived approach. It often provides the optimum level of resolution and strongly complements 
the first-principle models being more robust and efficient in many applications. 

2. Linear Filters 

The very first look at the input and output time series of substorm data, an example of which 
is shown in Figure 2, reveals a clear correlation between the solar wind input (inductive electric 
field parameter vBs) and the magnetospheric output (AL index). This clear correlation gave rise to 
the first family of data-derived models of the solar wind-magnetosphere coupling, namely the 
linear filters [Burton et al. 1975, lyemori et ai, 1979; Clauer et ai, 1983; Bargatze et aL, 1985]. 
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Figure l.vB^- AL time series with I minute resolution compiled by Weigel et al. [2001] for the 
whole year 1998. 

In linear filters the output is supposed to be a linear combination of the input with different 
time delays 

0{t)=^drf(T)l{t-r). (2.1) 
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If the response is indeed linear, the filter function/will be independent of the activity level. 
However, already the early studies [Bargatze et aL, 1985] revealed the significant dependence of 
linear filters on the activity level and thus suggested the nonlinearity of the magnetospheric 
response to the solar wind loading. 

3. Dynamical Chaos Hypothesis 

Nonlinearity often results in phase divergence, as it takes place, for example, in a nonlinear 
pendulum. Such a divergence in bounded systems may be a mechanism of dynamical chaos [e.g.. 
Tabor, 1989]. The hypothesis that the magnetosphere may be in a regime of dynamical chaos 
appeared to explain the seeming randomness of the auroral index time series. Note here that most 
dynamical chaos models deal with autonomous systems, which is not the case for magnetospheric 
activity represented by the auroral indices, as is clear fi-om Figure 2. However, the closer 
examination [e.g., Kamide and Baumjohann, 1993] reveals that the substorm current system at 
the ionospheric level, which contributes to the auroral index dynamics, consists of two 
subsystems, DPI and DP2. While the DP2 system is actually directly driven by the solar wind 
input, the DPI system shows rather autonomous "unloading" behavior. 

It was suggested [Vassiliadis et al, 1990; Roberts, 1991; Shan et al., 1991a, 1991b; Pavlos et 
al, 1992, 1994; Sharma et al, 1993] that the complex dynamics of the magnetosphere is self-
organized and as a result it is controlled by a few effective degrees of freedom, while its 
complexity arises fi-om the dynamical chaos effects. If that is true than the form of the attractor of 
the magnetospheric dynamics may be reconstructed using the time delay technique. It can be 
elucidated by the simple chaotic map model, given by the recurrent relation 

: Kx„ mod 1, (3.1) 

where modi denotes taking the fractional part of the mmiber Kx„, and iT is a constant number. If 
K<1, the relation (3.1) describes the sequence, which converges to zero. In contrast, ii K»l, 
then for most initial values XQ, the sequence (3.1) looks quite random as shown in Figure 3a. This 
type of behavior is also called deterministic chaos because of the deterministic rule (3.1). The rule 
can be inferred from the series Xn if one plots x„ versus x„.i as shown in Figure 3b 
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Figure 3. Pseudo-random series Xn generated by the map (3.1) with x^ and K^S (a), and 
the reconstruction of the deterministic rule (3.1) using time delays (b). 

This simple example has several important implications. First, it shows that the seemingly 
random dynamics of a nonlinear low-dimensional system can be reconstructed using the time-
delay embedding technique, that is by plotting the original series in an artificial phase space 
formed by the original variable and others constructed from the same variable using various time 
delays. Such an approach was proposed by Packard et al [1980] and Takens [1981]. Second, the 
regular structure of the reconstructed attractor in Figure 3b suggests that the time series ,x:„ as a 
fimction of the discrete "time" n can be predicted using local approximation of the attractor. The 
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corresponding technique of locally linear filters was elaborated [e.g., CasdaglU 1992] and then 
applied to forecasting of storms and substorms [Vassiliadis et al., 1995; Valdivia et al, 1996] 
along with other classes of low-dimensional deterministic models [Baker et al, 1990; Klimas et 
al, 1992; Hernandes et al, 1993; Horton and Doxas, 1998; Weigel et al, 1999]. First estimates 
of the effective dimension D of the magnetosphere, the so-called correlation dimension 
[Grassberger and Procaccia, 1983], gave very optimistic results with D ranging between 2 and 4 
[Vassiliadis et al, 1990; Roberts, 1991; Shan et al, 1991]. Moreover, the fact that D was a 
noninteger number suggested the "strange" character of the attractor [Lorenz, 1963], which might 
explain, in turn, the multiscale features of the substorm structure and dynamics. 

4. Self-organized Criticality Models 

The dynamical chaos hypothesis was based on one important assumption of low effective 
dimension of the magnetosphere. However, soon after the first estimates of the correlation 
dimension of the magnetosphere, Prichard and Price [1992] showed that those earlier estimates 
were caused by the long autocorrelation times of the system rather than by the low-dimensional 
dynamics. It was shown in particular that the modified correlation integral [Theiler, 1986] with 
excluded pairs of points, which differ in time less than by the autocorrelation time, does not 
converge for AE index time series. Two possible explanations of that negative result were 
proposed. There might be strong influence of the solar wind input (most of the dynamical chaos 
concepts were formulated for autonomous systems) or truly multiscale behavior of the 
magnetosphere with many excited degrees of freedom. The latter point of view in the form of 
another paradigm of the so-called self-organized criticality (SOC) was strongly motivated by the 
power-law spectra of the magnetospheric activity. They were first inferred from AE index data by 
Tsurutani et al. [1990]. Then Ohtani et al [1995] revealed similar properties of magnetic field 
fluctuations in the geomagnetotail, consistent with intermittent energy transport phenomena 
studied by Angelopoulos et al [1994]. The examples of power-law spectra in the form of the 
burst life time probability distribution [Freeman et al, 2000] and the singular spectrum of solar 
wind and magnetospheric data [Sitnov et al, 2000] are shown in Figure 4. 
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Figure 4. Power-law spectra of solar wind and magnetospheric activity in the forms of (a) life 
time r probability distribution D(T) of the auroral index ̂ (/and Akasofu parameter e [Freeman 

et al, 2000] (a burst lifetime, T, is the duration for which the measurement, AU(t) exceeds a given 
threshold value) and (b) the singular spectrum oiAL and v̂ ^ time series as well as their combined 

set [Sitnov et al, 2000] inferred from first 15 intervals of Bargatze et al [1985] database (for 
details see equation (5.2) and related discussions in section 5). 
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Power-law spectra usually indicate that fluctuations of all scales give comparable 
contributions to dynamics and the smaller scales cannot be simply averaged out. It is interesting 
to note here that stochastic time series with \l f" power spectra, known as the colored noise, 
have a finite correlation dimension £) = 2 / ( a - l ) [Osborne and Provenzale, 1989] and thus 

may mimic the dynamical chaos effects in the magnetosphere [Prichard and Price, 1992]. To 
resolve this uncertainty Theiler [1991] proposed the method of surrogate data, in which the 
correlation dimension of the original data is compared with the stochastic time series with the 
same power spectrum and autocorrelation. The surrogate time series can be formed, for instance, 
by randomizing the phases of the Fourier transform of the original time series. Using this 
technique the conclusion on the absence of a converged modified correlation dimension of the 
magnetosphere inferred from the AE time series has been confirmed [Price and Prichard, 1992; 
Prichard and Price, 1992]. Note however XhdX Roberts [1991] and Pavlos [1992] showed that the 
data trajectories of AE time series in embedding space may still be drastically different from 
those of the color noise (for details and fiirther discussions see [Pavlos et al., 1999] and refs. 
therein, [Prichard, 1995] and reviews [Sharma, 1995] and [Klimas et al, 1996]). 

In 1987 Bak, Tang and Wiesenfeld proposed an elegant model (hereafter BTW), which 
appeared to explain the ubiquitous nature of power-law fluctuations in different systems. That 
model as well as its modifications have been later applied by Consolini [1997], Chapman et al. 
[1998], and Uritsky and Pudovkin [1998] to explain the power-law spectra in the magnetosphere. 
The original BTW model [Bak et al, 1987] represents a mathematical sandpile, that is a grid of 
cells, each of which may accumulate some amount of grains Z due to the extemal loading. When 
the parameter Z exceeds some threshold value Zc, which is determined by either the critical slope 
or energy accumulated in the cell, 4 sand units are transferred to 4 closest cells (the number of 
cells, 4, is for the specific 2D BTW model): 

z,,,(x±l,>;±l) = z ,(x±l , ; ;±l)-f l; z,,,{x,y) = z,{x,y)-A, z > z „ (4.2) 

Bak et al. [1987] argued that this model reveals the power spectra distributions of avalanches 
in their size and energy independent of the details of the driving process. To highlight the latter 
property and distinguish the process from conventional critical phenomena [e.g., Stanley, 1971] 
also known as the second order phase transitions, they called it the self-organized criticality. SOC 
has been dociunented in various systems, including rice piles, type II superconductors, droplet 
formation and a multitude of computer models [e.g., Jensen, 1998 and refs. therein]. 

SOC as a new paradigm for geomagnetic activity has been fiirther tested by Freeman et al. 
[2000], Consolini and Chang [2001], Chapman and Watkins [2001], and Watkins et al. [2001]. In 
particular, Consolini and Chang [2001] discussed a modification of the SOC concept, taking into 
account the variable solar wind input (the so-called forced self-organized criticality). Freeman et 
al [2000] and Chapman and Watkins [2001] discussed the possibility to separate the autonomous 
SOC behavior reflected in power-law spectra of aiuroral indices from its part, possibly related to 
the DP2 system, which is directly driven by the solar wind. Watkins et al [2001] elucidated that 
SOC is not an aspect of the global magnetosphere but relevant more locally to the magnetotail. 
Takalo et al. [1999a, 1999b], Klimas et al. [2000] and Uritsky et al. [2002] studied a class of 
continuum running avalanche models of the tail current sheet based on a resistive MHD model. 

Due largely to the amazing simplicity and seeming universality of the original BTW model, 
the SOC concept has become very popular in complexity studies. However, it was soon realized 
that the BTW model is not as ubiquitous as expected and it does not describe in particular the 
sand dunes themselves. It has been shown [Nagel, 1992] that sand behaves in a manner more 
reminiscent of a first order phase transition than of a second one. Similarly, in the magnetopshere. 
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in spite of the scale-invariant behavior of some parameters, there are clear signatures of 
characteristic time scales associated with storms (~ days) and substorms (~ hours). More rigorous 
results were obtained by Borovsky et al [1993], Prichard et al [1996], and Smith et al [1996], 
who showed, in particular, that the intensity and inter-substorm interval for one-half of substorms 
have the probability distribution with a well-defined mean. This apparent contradiction between 
scale invariance in index spectra on the one hand and the appearance of time and magnitude 
scales in substorm data on the other hand stimulated Chapman et al [1998] to propose for 
explanation of the magnetospheric activity an advanced avalanche model elaborated by Dendy 
and Helander [1998]. In contrast to the classical BTW cellular automation, the new model was 
continuous in height and slope with the threshold condition governed by a probabilistic rule. It 
demonstrated two types of avalanches, internal that did not reach the edges of the system, and 
systemwide ones. Internal avalanches reproduced the classical SOC picture with the absence of 
an intrinsic scale. In contrast, the systemwide discharges had the probability distribution of the 
time intervals between each discharge and the next with a well-defined mean. Those systemwide 
avalanches were interpreted by Chapman et al [1998] as substorms. 

It is worth noting here that the fundamental physical processes in magnetospheric plasmas 
underlying their complex dynamical behavior may not allow scale-invariance in the form of 
avalanches. For instance, in contrast to current disruption phenomena [e.g., Lw/, 2002 and refs. 
therein], which indeed resemble avalanches in a ricepile, the processes of magnetic reconnection 
[e.g., Bim et al, 2001] reveal scale-invariance only near the singular X-line, whereas the 
minimum size L of a plasmoid formed by reconnection is too large L >~ AR^ [leda et al, 1998] 
to be utilized in any granular multiscale model of the magnetospheric activity. 

Another important feature of magnetospheric dynamics, which distinguishes it from SOC, is 
its strong dependence on the solar wind input. This dependence is evident from Figure 1 and is 
confirmed by the successful use of linear and nonlinear filters in forecasting the magnetospheric 
activity as discussed in more detail in the sections 2 and 3. Moreover, even the multiscale features 
of this activity are strongly affected by the solar wind input. In particular, such parameters as the 
fractal dimension [Uritsky and Pudovkin, 1998] or K-exponent in the sign-singular analysis 
[Consolini and Lui, 1999] show clear dependence on the substorm phase, which is controlled in 
turn by the solar wind loading. Thus, the original 1987 SOC paradigm does not seem to be quite 
useful for modeling and particularly forecasting of the magnetospheric activity. It introduces 
however a very promising probabilistic description of this activity and highlights its scale-
invariant features, which were explicitly demonstrated by Lui et al [2000] and Uritsky et al 
[2002] on the basis of Polar data. The most important lesson of SOC, according io Jensen [1998], 
is that, in a great variety of systems, it is misleading to neglect the fluctuations. 

5. Data-derived Picture of Solar Wind-Magnetosphere Coupling: Analogy with Phase 
Transitions 

Another class of magnetospheric activity models, which reconciles the hypothesis of 
dynamical chaos and the seemingly alternative SOC interpretation, resulted from the attempts to 
improve the low-dimensional description of the solar wind-magnetosphere interaction and to 
elucidate in particular the role of the solar wind driving. In contrast to the previous works based 
on the assumption that the dynamics of the magnetosphere is autonomous [Vassiliadis et al, 
1990; Roberts, 1991; Shan et al, 1991b; Sharma et al, 1993], an attempt was made [Sitnov et al, 
2000] to construct a low-dimensional input-output relationship, or improve it as compared to its 
simplest form of linear filters. For that purpose the data were studied in the time-delay space 
involving both the output of the system (the auroral index AL) and its solar-wind input (the 
parameter vBs) 
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X = (0:,lf) = (0„...,0,_(,,),/„...,/,_(,_,)), I,=vBXt)la^,, 0, = AL{t)/a, (5.1) 

with both input and output parameter being normaUzed by their standard deviations a. The 
resulting expanded time series were additionally sorted using the singular spectrum analysis 
(SSA) [Broomhead and King, 1986] to reveal their linear combinations, which are essential to 
reproduce the dynamics of the system adequately. In the SSA the matrix X is expanded in a series 
of projections P, through the singular value decomposition [e.g., Press et al., 1992] 

X = UWV^ î  = (XV)., (5.2) 

where W is the diagonal matrix, whose values w/ reflect the significance of projections Pi so that 
the spectrum w, resembles the corresponding Fourier and wavelet spectra with the data-derived 
basis functions [Q,g., Preisendorfer, 1988]. 
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Figure 5. Eigenvectors corresponding to three largest SSA eigenvalues w,, /= 1,2,3 for embedding 
(5.1) with M=32 inferred from first 20 intervals of Bargatze et al [1985] database (a) and the 2D 
manifold of the magnetospheric dynamics in the space of the corresponding projections P,. The 

arrows show the data-derived circulation flows of the system (/[,P3). 

Sitnov et al. [2000] found that, in contrast to the correlation dimension, and in spite of the fact 
that the SSA spectrum is a power-law, the more general dimension estimate, the so-called coast­
line dimension Df [e.g., Abarbanel et al, 1993] saturates as a function of the embedded 
dimension 2M in the region D^ e (2,3), and this saturation persists with an increase in the 
number of the data points for the largest scales. This implies that the magnetosphere trajectory in 
the embedded input-output phase space lies close to some two-dimensional surface. Subsequent 
attempts to plot that surface as well as the evoiution of the magnetosphere on it gave surprisingly 
interesting results shown in Figure 5. 

The substorm dynamics of the magnetosphere appears in this data-derived picture as a 
counter-clockwise motion of a point on a two-level surface in the 3D space formed by the 
papameters Pi, P2, amd P3. The corresponding projectors Vj, V2, and V3 of the matrix V are 
shown in Figure 5a. Together with the general structure (5.1) of the matrix X they demonstrate 
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that the subspace (P^^F^yP^) is formed by two functions of the input Pi and P3 (integrated and 
differential parameter v^ ,̂ top and bottom panels in Figiire 5a, respectively) and a function of the 
output (integrated AL, middle panel). Figure 5b reveals two interesting features of substorm 
dynamics. First, the substorm onset (the transition from the upper level to the lower one) is 
associated with the reduction of the solar wind-magnetosphere coupling (saturation of the input 
Pj and transition from positive to negative values of the parameter P3) as suggested and 
interpreted in detail by Lyons et al. [2003]. Second, the whole surface in Figure 5b resembles the 
temperature-pressure-density diagram of conventional (non-self-organized) water-steam phase 
transitions [Stanley^ 1971] shown in Figure 6a. This diagram has a special critical point where 
density jumps disappear, although jumps or singularities are observed for the second derivatives 
of the thermodynamic potentials such as the heat capacity (Figiu-e 6b). It is also known [e.g., 
Stanley, 1999; Kadanoff, 1999] that near the critical point the fluctuations of the system become 
multiscale with power-law spectra. 
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Figure 6. (a) Temperature-pressure-density diagram for water-steam transitions with the critical 
point (r, P, «)=(647K, 22Mpa, 322 kg/ma) (http://www.lsbu.ac.uk/water/images/den.gif). 

(b) Specific heat Cy of SF«j near the critical point [Haupt andStraub, 1999]. 

An important feature of the second order phase transitions, which distinguishes them from other 
scale-invariant processes and in particular those in the BTW model of SOC, is a series of scale-
invariant relationships different from the scale distributions such as AU and AL spectra shown in 
Figure 4. They relate different parameters of the system such as the temperature fluctuations near 
the critical point and the corresponding density fluctuations 

«-« oclr/r-if, r/r-i->o-, 
(5.3) 

Here the parameter ŷ  is a critical exponent. Sitnov et al. [2001] computed an analog of the critical 
exponent near the effective critical point {^Py^P2,P^) = (0,0,0) in the form of the lower envelope 

of the derivative dPj /dt as 

mm{dP,/dt)ocP/ (5.4) 

This envelope is shown in Figure 7. It was shown also that within the framework of the 
simplest mean-field model of phase transition dynamics, the so-called dynamical Ising model 
[Zheng and Zhang, 1998], the exponent yS» is connected to the classical exponent fi by the 
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relation P^-Zp . Note here that the existence of the multiscale input -output relationship of the 
type of (5.4) is consistent with the results QIFreeman et al [2000] and Sitnov et al [2000] shown 
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Figure 7. Scale invariant input-output relation of the type of (5.3) with /?» « 0.64 inferred from 
the SSA analysis of substorm dynamics [Sitnov et al, 2001]. 

in Figure 4, which reveal close resemblance between solar wind and magnetospheric fluctuation 
spectra. Although the results of Freeman et al. [2000] and similar results by Hnat et al [2002] 
reveal nearly same spectra of solar wind and auroral indices suggesting that the magnetosphere 
works as an exhaustive pipe for solar wind and the input-output exponent p should be simple 
rational number, the results oi Sitnov et al. [2000] (Figure 4b) as well as the extended analysis of 
Hnat et al. [2002] performed in [Hnat et al, 2003] reveal quite considerable difference between 
the input and output spectra. 
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Figure 8. (a) Hysteresis phenomenon (white rectangle) inferred from the SSA analysis of 
substorm data [Sitnov et al, 2001]. (b) Interpretation of Figure 7a as a phase separation surface of 
nonequilibrium phase transitions; dashed lines show its analog in the equilibrium case similar to 

Figure 5a. 

The dynamical and non-equilibrium nature of magnetospheric phase transitions during 
substorms is reflected by the hysteresis phenomena, when the system may be in two or more 
different states under the same quasi-static conditions such as, for instance, its temperature and 
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pressure. Then the analog of the temperature-pressure-density diagram differs from the 
equilibrium one shown in Figure 6a and resembles more the one shown in Figure 8b. The original 
projection of the substorm data shown in Figure 5b cannot reveal hysteresis as the corresponding 
intervals in data would be folded. In fact, those intervals were removed from the main data set to 
reveal the two-level surface; however, we show below that the analog of Figure 5b can be 
obtained without that rather artificial procedure. Another projection shown in Figure 8a reveals 
the hysteresis phenomena in substorm dynamics. 

Hysteresis is closely related to the metastability property of the system, because one of many 
states available at given parameters of the system is often metastable and becomes unstable in 
presence of fluctuations. The fact that the magnetosphere during substorms behaves as a 
metastable system is reflected in many models of the substorm onset in the form of the 
corresponding plasma instabilities and catastrophes [Goertz and Smith, 1989; Sitnov et al, 1997; 
Hurricane et al., 1998; Bim et al, 2004]. 

The apparent controversy between the data-derived picture of the magnetospheric dynamics 
described above and the classical SOC model [Bak et al, 1987] has been resolved recently within 
the framework of the SOC theory itself Vespignani and Zapperi [1998] noted that the BTW 
model contains a condition, which is quite unusual for real open systems. Specifically, each new 
grain of sand is added to the pile after the completion of all avalanches induced by previous 
grains. This makes the loading rate the smallest parameter in the model. According to Vespignani 
and Zapperi [1998], elimination of the aforementioned condition almost restores the conventional 
picture of phase transitions for both classical SOC models, sandpile and forest fire model. There 
exists, in particular, an analog of the temperature-pressure-density diagram similar to Figure 5b 
(Fig.l in [Vespignani and Zapperi, 1998]) as well as the input-output multiscale relationship 
similar to (5.3) and (5.4) and Figure 7 (Figs.2 and 3 in [Vespignani and Zapperi, 1998]). 
According to Vespignani and Zapperi [1998], the genuine SOC regime arises only in the limit 
when both driving and dissipation rates tend to zero. On the other hand, the behavior of cellular 
automata beyond the SOC regime still has an important feature, which distmguishes them from 
conventional water-steam transitions. Having driving and dissipation rates as the control 
parameters instead of the state parameters such as the pressure or temperature, these transitions 
turn out to be inherently non-equilibrium. 

These results have been fiuther substantiated by Consolini and De Michelis [2001], who 
studied a revised forest-fire model driven by a ID coupled map, which shows on-off 
intermittency with quiet and turbulent periods and thus is able to mimic the important features of 
the solar wind driving of the Earth's magnetosphere. They report in particular the criticality, 
which is "forced" rather than "self-organized" and is very similar to ordinary critical phenomena 
with first and second order phase transitions. A transition from the avalanche regime 
characteristic of SOC to another, "continuous flow" regime was also reported by Corral and 
Paczuski [1999] for the so-called "Oslo" model, which is widely used in SOC studies. In contrast 
to the avalanche regime, where the width of the active zone diverges with system size, in the 
continuous flow regime the active zone width is independent of the system size. The transition to 
the continuous flow regime occurs when the time between grain additions becomes comparable 
with the mean avalanche time. A seemingly different result on the robustness of the SOC 
behavior under strong driving conditions has been reported by Watkins et al. [1999]. However, 
Watkins et al. [1999] used in their analysis a modified sandpile model [Dendy and Helander, 
1998; Chapman et al, 1998], in which the probability distribution already contains both the SOC-
like power-law constituent and a non-SOC part with a characteristic scale. 

6. Phase Transition Analogy Applications: New Generation of Forecasting Tools 

The phase transition analogy revealed in the analysis of the correlated solar wind-
magnetosphere data made several important contributions to our understanding of modeling solar 
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wind-magnetosphere interaction. First, it showed that global coherent and multiscale phenomena 
may co-exist like first- and second order transitions do in the water-steam system. Second, it 
revealed the importance of averaging in the reconstructed phase space necessary to reveal the 
"mean-field" dynamical features (figures 5b and 8a). Third, it confirmed that the mutiscale 
features of the magnetospheric dynamics may depend on the solar wind conditions. Therefore, the 
probabilistic description of those multiscale features must have the form of conditional 
probabilities. The utilization of these new concepts have resulted in creating a new generation of 
tools to model and forecast the magnetospheric activity. 

6.1 Mean-field dimension 

In the mean-field approach the dynamics of the system is approximated by the motion of the 
center of mass of its AŴ  nearest neighbors in the embedded and SSA-ordered phase space 

x r = 2 x „ x,=(/„...,/,^«.,),0„...,0,^^.,,)(v„...Vo), \\x,-x,l<e{NN), 

where v., i=l,...D, is the i* column of the orthogonal projection matrix Fin the singular value 

decomposition (5.2), and €(NN)  is the minimum radius of an n-dimensional sphere containing the 
nearest neighbors. In particular, the next step in time is given by the formula 

0 , : ( = F ( x r ) = K , ) , x.sNN, (6.2) 

The minimum embedding dimension D in these equations is determined by the condition of a 
regular behavior of the fimction F. The point is that the averaging procedure in multiscale 
systems often becomes incorrect as it takes place, for instance, in case of the phase transitions 
near the critical point [Kadanoff, 1999]. On the other hand, the theory of critical phenomena [e. 
g., Kadanoff, 1999 and refs. therein] as well as the dynamical system theory [e.g., Casdagli, 
1992] suggest that the mean-field description based on the averaging procedure may be correct if 
the dimension is high enough. This is the dimension we search for. In particular, as suggested by 
Ukhorskiy et al [2003], given the specific number of NN and accuracy SF we calculate the 
minimum dimension D=A, for which the following condition holds 

mf 
P7!\-^'A<^F^ 

(6.3) 

where (9/+i differs from 0/7, given by (6.2) in that the set of the nearest neighbors of x, 

includes now the point x, itself Then the optimum mean-field dimension D;„/of the system for a 

given pair (NN,£f) is found as a cut-off of the probability distribution fimction P(D(). This 
definition of dimension ensures the regular character of the forecasting process (6.2). Its 
dependence on the averaging level NN is also quite natural as in practice the dimension does 
depend on the region of scales considered (one can propose as an example a seashell, which is ID 
at scales more them 10cm, 2D at 1 cm scale and 3D at smaller scales). The effective dimension 
Dmj=3y consistent with the SSA images in Figures 5b and 8a, has been foimd for NN=300 
[Ukhorskiy et al, 2003]. Moreover, the new probabilistic approach allows us to provide the 
analog of Figure 5b without removing hysteresis intervals from the original data set. The 
hysteresis phenomena responsible for the folding of the surface shown in Figure 8a make the 
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distribution of trajectory points /^(Pj) double peaked. However, one of two peaks of that 

distribution is usually larger than the other, and the former peak determines the value of the 
parameters P2 for the corresponding equilibrium system (for details see, for instance [Gilmore, 

1993]). The maximum probability plots Pi {P^^P^). ^ (^2) = maxF(P2)|p, p^ for two different 

data sets [Bargatze et al, 1985] and [Weigel et al, 2001] are shown in Figure 9. Note that the 
former data set includes only non-storm substorms of different averaged levels of activity, while 
the latter one represents just one year record of ̂ X and vBs parameters including both storm and 
non-storm substorms. The amazing similarity of plots in Figure 9 with conventional temperature-
pressure-density diagram of water-steam transitions (Figure 6) strongly supports the hypothesis of 
the phase transition-like behavior of the magnetospheric index AL dmng substorms. 

-?1 -15 -10 - 5 0 

Figure 9. Substrom dynamics of the magnetosphere inferred from the singular spectrum 
analysis of AL-vBs data for Bargatze et al [1985] (a) and Weigel et al [2001] (b) data sets. 

Different colors code maxima of the conditional probability distribution Pfo|jc/,jiCi>. Structure of 
the SSA eigenvectors v„, which determine the relation of the variables x„, to the original time 

series AL and v̂ ^ through (6.1), are shown in yellow-blue panels. 

6.2 Conditional probability approach to forecasting of substorm activity 

Owing to equation (6.2) the mean-field description provides the forecasting algorithm similar 
to that of nonlinear filters, which is superior to the linear filter approach. Moreover, in contrast to 
nonlinear filters and similar to linear ones, the optimization of this nonlinear algorithm involves 
only one global parameter D^f and therefore significantly improves deterministic predictions. 
This type of prediction becomes possible in spite of the power-law spectra of the output 
fluctuations as the system is strongly driven by the solar wind input. In particular, Ukhorskiy et 
al [2004a] have shown that the conditional probability distributions P(0\I), which constitute the 
almost power-law marginal distribution P(0) in case of the solar wind-magnetosphere system 
described by AL and v̂ ^ are much more localized and non-power-law. This fact not only justifies 
the mean-field deterministic forecasting algorithm (6.2) but allows to fiirther improve predictions 
by supplying each specific value of the deterministic forecast 0,+/ at given time /+/ with the 
conditional probability barPfD,+/|/^ 
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Figure 10. Mean-field and conditional probability (gray and color shading) predictions of AL 
index (blue) using the solar wind data input (top panel) for the if^ interval of Bargatze et al 

[1985] database. Middle panel shows the probability P(Ot^i\xt) of AL with the optimum choice 
(Dmfi NN)=(5, 50). Bottom panel shows the mean-field forecast 0,'̂ { (red) and the conditional 

probability P(0,^i > O^/^ \ x,) of deviations from O^/^ withP < ̂  7 (dark yellow), 0.9 (yellow) 

and 1 (light yellow). 

r-, 5 0 

ac - 5 0 ¥^^ 

I: WwV AAM^AT^^NAJ^ 

Figure 11. One-day predictions of relativistic electron intensity at geosynchronous orbit 
{M=3, NN=300) for a part of of 1999. Inputs: the SymH index (top panel) and the solar wind 

velocity (upper middle panel). Outputs: the conditional probabilities P(0,^, | x,) (lower middle 

panel), predicted log(j^"^) (red, bottom panel), contours of probability P{S,^^\x,) (yellow 

shading, bottom panel) for the actual log(Jj (black, bottom panel) to exceed the predicted 

log(j^) under the given solar wind and magnetospheric conditions. 



208 

P(0 , Jx , ) = P ( 0 , J , x.eNN, (6.4) 

showing the predicted distribution of deviations from that deterministic value 0/+/ due to the 
muhiscale properties of the system. 

An example of such predictions for Bargatze et al [1985] data set is shown in Figure 10. It 
shows in particular that the mean-field model (6.2) forecast (bottom panel, red curve) is quite 
efficient in reproducing the average dynamics of AL. In contrast to earlier locally linear filter 
techniques [Vassiliadis et al, 1995; Valdivia et al, 1996], the new method does not require any 
tuning of the filter parameters, as demonstrated by Ukhorskiy et al [2002], as long as the mean-
field dimension is £)„/ determined using the procedure described in the previous subsection. The 
complementary conditional probability forecasts are given in Figure 10 in two forms. First, the 
middle panel shows the probability P(Ot+M of AL with the optimum choice (D„f, NN)=(5, 50). 

The bottom panel gives the conditional probability P(0,^, >Olf^ |x^) of deviations from the 

mean-field forecast 0,'̂ { . The probability distributions are computed at each time step using only 
those events that correspond to AL values greater than the mean-field model output. In particular, 
the 100% contour includes all deviations from the meanfield prediction, including the sharpest 
peaks. 

6.3 Conditional probability forecasting of radiation belt electron fluxes 

The unified data-derived description based on the combination of mean-field dynamical 
model and conditional probability approach provides an efficient technique for modeling and 
forecasting various magnetospheric time series. Ukhorskiy et al [2004b] used this technique for 
one-day predictions of the MeV electron fluxes at geosynchronous orbit. The parameters of the 
model were derived from the correlated database of solar wind parameters, geomagnetic indices, 
and daily maxima of relativistic (> 2 MeV) electron flux observed by GOES 7 and 8 satellites 
during years 1995 through 2000. The logarithm of the flux daily maxima was taken as the output 

of the model, i.e O, =\og{j^\ . The model was driven with daily maxima of the input 

parameters 

[l^\..jf^)^m2^{v,-SyrnH,vB^,P^„,AsyH), (6.5) 

where SymH and AsyH are longitudinally symmetric and asymmetric mid-latitude geomagnetic 
indices, respectively, with the former one being often considered as a high-resolution analog of 
the Dst index. 

The small-scale dynamics of electrons in the outer radiation belt have a multiscale nature due 
to stochastic interactions with various wave fields. In a first principle approach averaging over 
these small scales yields a set of diffusion equations that govern the large-scale dynamics of the 
electron fluxes. To derive the global dynamical constituent Ukhorskiy et al [2004b] used the 
mean-field dynamical approach based on the ensemble averaging of similar states in the 
reconstructed phase space of mean-field dimension. In particular, it was shown that the mean-
field model yields the average prediction efficiency of 0.77, which exceeds the predictability of 
diffusion-based models [Li et al, 2001] by about 0.2. 

To describe the constituent of the MeV electron flux time series not captured by the 
deterministic model the conditional probability approach was used. The conditional probabilities 
were calculated using (6.4). Since the mean-field model often underestimates the fluxes. 
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P{0^^^ I x^) was used to evaluate the probability P(<̂ ,+j | x j of the observed value of the flux 

(9,̂ , to exceed its predicted value 0,+i, where S^ =0^-0t, for 0^>0t, and 0 for O, <0t. 
At each time step the output of the deterministic model was supplemented with the 

corresponding probability contours S^ 
(6.6) 

f>(^IVi) 

which were used in risk analysis forecasting. For example, C=l corresponds the highest possible 
value of the flux, while C=0.7 corresponds to the flux level which is not exceeded in 70% of the 
cases. 

An example of one-day prediction of the combined model given by the mean-field and 
conditional probability descriptions together is shown in Figure 11. Taking into account the 
relatively limited amount of data, the calculation of the mean-field dimension was replaced in this 
case by the straightforward optimization of the mean-field evolution equation (6.2) over the 
parameters M and NN. In particular, the optimal set {M=3, NN=300) used to Figure 11 gives the 
highest Prediction Efficiency PE=1-MSE/VAR, where MSE is the mean squared error and VAR is 
the variance of the observed time series. 

The most relevant input parameters v and SymH are shown in top panels of the figure. The 
time series of log (y J are shown in black in the bottom panel and the one-day predictions of 

log(y^"^) are shown in red. The large daily variations of log(yf^) are caused by the satellite 

rotation around the Earth. The time series of predicted log(yf^) has one-day time scale and 

provides an upper envelope for the observed variations of the flux. The conditional probabilities 

of log(yj^) calculated at each time step are shown in the third panel and these are used to 

calculate the probability contours shown in different shades of yellow above the predicted value 

of logfŷ ™") in the bottom panel. This way the model yields risks of deviations fi-om 

deterministic predictions as a fimction of the average solar wind and magnetosphere conditions. 
To validate the probabilistic approach one must answer the following question. Being 

calculated using in-sample statistics, how does P{d,\x^_^) perform out-of-sample? In other 

words, by the construction df probability contours embrace 0100% of in-sample events, will it 
still hold for out-of-sample predictions? To answer the first question we calculate the following 
average of (6.6) over all x,_, 

r^p{x,_,)^'p{s\x^_,)ds. (6.7) 

for out-of sample predictions. Note that for in-sample predictions (6.7) becomes an identity by 
virtue of the definition (6.6). On the other hand, using the definition of the conditional 
probability, the right hand side of (6.7) can be re-written in the form, which does not contain the 
unknown fiinction ^(x,_,) 

'ZP{x,.,)f P{S\x,_,)dS= lp{S')dS\ (6.8) 
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where ^ ' = ^ / j f . 
The integrals in the right hand side of (6.8) calculated for out-of-sample predictions of log 

fluxes for years 1995-2000, are listed in Table 1. The average error is only 0.03, which means 
that the in-sample training set provides the sufficient coverage of the dynamic range of the flux 
and therefore can be used for out-of-sample probabilistic predictions. There are two major 
sources of the observed uncertainty. First, the events lying outside of the dynamic range of the 
training set (i.e. most extreme events like the Bastille day 2000 storm), cannot be predicted based 
on this training set. This explains the fact that C=J contour does not embrace 100% of events. 
Second, due to the coarse partitioning of the flux range used in the calculations the contours 
corresponding to different values of C can coincide at some places, which explains why a given 
probability contour generally embraces a slightly higher number of events. 

Table 1. Integrals (6.8) calculated for out-of-sample predictions of log fluxes for years 1995-2000 

c 
lp{sys^ 

0.50 
0.55 

0.60 
0.64 

0.70 
0.73 

0.80 
0.83 

0.90 
0.91 

1.0 
0.97 

A more conventional way of estimating the probability contours is based on the marginal 
probability density function P{Sf) calculated with all events in the training set. The resultant 

contours S^ do not depend on any control parameters and therefore are fixed in time d^ ->5 . 
The discrepancy between the two approaches can be quantified in terms of the standard deviation 

cr̂  = (1 / N) ^ ^ ^ (df 13^ -\^ , which also shows the variability of the conditional probability 

functions. The average <j^ calculated for 50-100% contours for years 1995-2000 is as high as 
0.5. This means that the shape of conditional probability function strongly depends on the solar 
wind and magnetospheric conditions and that the probability contours derived fi-om the marginal 
probability density fimction in most cases strongly underestimate or overestimate the risks in the 
system. 

7. Conclusion 

We have reviewed three types of models of geomagnetic activity, based on the concepts of 
dynamical chaos, self-organized criticality and nonequilibrium phase transition physics. These 
concepts are shown to provide important new techniques improving the simplest approach to 
modeling solar wind-magnetosphere interactions based on linear filters, including (I) time delay 
embedding, (II) averaging over the nearest neighbors and (III) conditional probability approach. 
The resulting model of the magnetosphere as a dynamical system reveals interesting new features 
of substorm dynamics such as an analog of the phase transition diagram, hysteresis, and input-
output multiscale relationships. Importantly, these features are consistent with the generalized 
SOC theory, which treats the BTW regime as a limiting case of the specific class of 
nonequilibrium phase transitions. This also results in a new generation of forecasting tools with 
deterministic predictions of the global component of magnetospheric dynamics and probabilistic 
predictions of its multi-scale features. 
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