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Predictability of Large Geomagnetic Disturbances
Based on Solar Wind Conditions

Robert S. Weigel, Daniel N. Baker, E. Joshua Rigler, and Dimitris Vassiliadis

Abstract—We test the ability of a data-derived model of geo-
magnetic activity, originally optimized to have a high prediction
efficiency (PE), for its ability to predict only large geomagnetic
disturbances. Correlation-based metrics, such as prediction effi-
ciency, are often used as a measure of model performance. This
metric puts equal weight on prediction of both large and small
measurements. However, for space weather purposes, one is often
interested in knowing only if a large disturbance event will occur
so less emphasis should be placed on small measurements. If only
large events are of interest, then a correlation metric is not the best
measure of model performance. In this work, we determine how
well a data-derived model, originally optimized to have a high pre-
diction efficiency, predicts large geomagnetic events. The ratio of
the number of correct to false alarm forecasts, , is used as an
event-predictor metric. It is shown that in the electrojet regions
the data-derived model that predicts the north–south component
of the ground magnetic field has a spatial profile similar to
that of the prediction efficiency. Maximal values of = 4 are
found at 0300 MLT when an event is defined as an excursion in the
hourly-averaged north–south component of the ground magnetic
field below 400 nT. Whereas the local time profile of ( )
is similar to ( ), the profile of ( ) differs sub-
stantially from ( ) in the noon sector. Epoch analysis
shows that the poor performance in the noon sector is a result
of pre-event levels of not being clearly separated from
post-event levels.

Index Terms—Decision-making, Geomagnetism, Geophys-
ical measurements, Geophysical signal processing, Prediction
methods.

I. INTRODUCTION

PREDICTION of large geomagnetic disturbance events is
often important for real forecasting situations; in many

cases, such events require a discrete (or binary) prediction
that specifies only if an event will or will not happen. This
is in contrast to the fact that most data-derived (or “inverse”)
geomagnetic models (e.g., linear filters, neural network fil-
ters, etc.,) are not optimized to predict events; in most cases,
data-derived filters are optimized to have a high data-model
correlation or prediction efficiency. That is, the linear or neural
network filter parameters are determined such that the model is
good at predicting both large and small amplitudes. Supposing
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that prediction of large events is only of interest, the best
approach would be to develop a new data-derived filter with
parameters such that the model is optimized to have success in
predicting events. Such redevelopment of a filter is not always
possible and can be computationally expensive. A more likely
scenario is that previously developed models will be used as
event predictors.

In this paper, we consider how a previously developed neural
network filter model that was originally developed to have a high

performs in predicting large geomagnetic events. We seek
to set a benchmark for the predictability of large geomagnetic
events in the same way that [1] set a benchmark for the pre-
dictability, in terms of , of the amplitude of the ground mag-
netic field and its time derivative as a function of local time.

The events considered in this paper are crossings of two func-
tions of the ground magnetic field above a threshold value: 1) the
hourly average value of the north–south component of the geo-
magnetic field, , measured by auroral-zone magnetometer
and 2) the hourly average of computed using the one
minute differenced data. We first review the ability, in terms
of prediction efficiency, of the two neural network prediction fil-
ters developed by [1] that predict and , respectively.
These two models are then evaluated, in terms of the metric,
for their ability to predict only large events. The metric is the
ratio of the number of correct forecasts to the number of false
alarm forecasts. It is a quantity that can be used by a large class
of users to determine if always taking mitigating action based
on a prediction of an event will have economic utility [2]–[4].

II. ANALYSIS

The data set contains ground magnetometer measurements
from the Sodankylä magnetometer station at one-minute reso-
lution for days 23–365 of 1998 and all days of 1999 and 2000.
The solar wind magnetic field data (in GSM coordinates) from
the MAG instrument on ACE [5] were interpolated from 16-s
averages to a 1-min time grid. The solar wind ion-velocity data
from the SWEPAM instrument on ACE [6] were interpolated to
a 1-min time grid from 64-s averages.

Reference [1] developed two data-derived neural network
models and evaluated their ability to predict two measures
of geomagnetic fluctuations. One model predicts the 30-min
average of the north–south component of the magnetic field ,
while the other predicts the 30-min average of with

. The parameters of the neural network were deter-
mined using input variables of six 30-min averages of the solar
wind measurements or combinations
thereof. Here we review the results of this work focusing only
on one of the auroral-zone magnetometer stations, Sodankylä
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(SOD), which has geographic latitude and longitude of (67.37,
26.63) and CGM latitude and longitude (in 1998) of (63.87,
107.61).

As shown in Fig. 1(a), the obtained by the model
ranges from zero to 0.7. The was also evaluated when only
the individual variables of or were the only inputs
to the filter. Fig. 1(a) shows that and have similar

profiles. This indicates that they both have a contribution
in predicting variations in . This is expected because one of
the main drivers of auroral zone geomagnetic fluctuations is the
product of and the southward component of .

The locations of highest correspond to the average loca-
tion of the eastward and westward electrojets in the expanded
auroral oval. This was interpreted as indicating that the model
was capturing solar wind driving of these current systems. In
between these regions, the is near zero as a result of a com-
bination of factors, including the low average values of the mag-
netic field amplitude and the lack of a consistent solar wind
driven current system appearing in these locations. Fig. 1(b)
shows that the of is less dependent on spatial lo-
cation than the of . The independent contribution of
and has a strong local time dependence, which was inter-
preted as an indication that the solar wind- coupling
function has a MLT dependence.

Having reviewed the ability of the two models to predict all
levels of and as a function of local time, suppose
now that one is only interested in knowing if the disturbance
measure or will rise above a threshold level

. As noted in the introduction, a new model can be developed
that is optimized to perform well in predicting only threshold
crossing events. Alternatively, a model that predicts all levels
of activity can be used for event predictions. In this work, we
choose to evaluate the ability of the two previously developed
models as event predictors. The output of these two models are
transformed into a event prediction by stating that when the filter
output, , predicts a value of above a given level, a prediction
of an event in is made. We define an event as a crossing in the
disturbance signal from below to above and a forecast of an
event in is made at hour when the set of rules

(1)

is satisfied, where is an adjustable threshold parameter. Thus,
if the hourly average of goes from below to above ,
a prediction of a threshold crossing in is made for the next
hour, provided was not already above . Given the set of
event times from inspection of the time series and the set
of event-forecast times from the time series, the number of
correct forecasts is the number of values for which there is a

in the interval . This means that the forecast
of an event is extended over 2 h. A similar approach for the
prediction of large increases in the daily average of relativistic
electron fluxes based on has been developed in [8].

The quantity is used as an event-predictor metric. As
noted in the introduction, the ratio of the number of correct to
false alarm forecasts is an important measure of model perfor-
mance from a user’s perspective. This ratio represents the max-
imum cost/benefit ratio that a broad class of users can have if

Fig. 1. From [7], the prediction efficiency of models which use different input
data I at auroral-zone station SOD for the PE of (a) B and (b) jdB =dtj.
The prediction efficiency was computed by taking all predictions of B (or
jdB =dtj) over the three-year interval at a given local time and comparing this
with the measurements at that local time.

taking mitigating action following each forecast is to have pos-
itive monetary utility [4]. Other quantities, such as the number
of misses, may be important for a different class of user, but we
will restrict the analysis to the ratio. The possible outcomes
of an event forecast are listed in Table I.

To analyze the event forecasts at different local times,
is computed for all forecasts in a sliding 5-h window

centered on a given MLT. This computation was made for
values adjusted in increments of 1% of the full range of . The

value reported corresponds to its maximum value with re-
spect to . We have restricted the minimum number of accept-
able forecasts to 30; the number of data points we are fitting the
model to is the number of forecasts, and this number should be
much less than the number of free parameters (one in this case,

).
In Fig. 2(a), the ratio of correct to false alarm forecasts is

shown for , at three threshold levels, , 320,
and 400 nT. These values correspond to the 96th, 98th, and 99th
percentiles in the local probability distribution of

. The profiles are similar to Fig. 1(a), in that the peaks are
near the locations of the eastward and westward electrojets. One
difference is that the post-midnight sector peak is much higher
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TABLE I
CONTINGENCY TABLE FOR AN EVENT FORECAST WITH ELEMENTS OF

NUMBER. N REPRESENTS THE NUMBER OF CORRECT FORECASTS WHILE

N IS THE NUMBER OF FALSE ALARMS. THE NUMBER OF MISSES IS GIVEN

BY N AND x IS THE NUMBER OF INTERVALS WITH NO FORECASTS OR

EVENTS. N REPRESENTS THE TOTAL NUMBER OF FORECASTS, WHILE THE

TOTAL NUMBER OF TIME INTERVALS WITHOUT A FORECAST IS N . NOTE

THAT N + N AND N +N BOTH SUM TO N , THE TOTAL NUMBER

OF WARNING PLUS NON-WARNING INTERVALS. THIS TOTAL NUMBER

MAY BE LESS THAN THE NUMBER OF POINTS IN THE TIME SERIES

BECAUSE FORECASTS ARE EXTENDED OVER TWO DAYS

Fig. 2. (a) Ratio of the maximum (with respect to S ) number of correct to
false alarm forecasts of a threshold crossing in jB j above threshold values
corresponding to the 96, 98, and 99th percentiles of the distribution at that local
time. (b) Ratio when the threshold value is chosen to be the 95th percentile value
at a given MLT. To the right of the figures, contingency tables in the format of
Table I are shown for selected local times.

than the pre-dusk peak. This indicates that for a given threshold
value, events in the westward electrojet region are better pre-
dicted than those in the eastward electrojet region with respect
to the ratio. One contribution to this difference may be a
result of the distribution of amplitudes of being less ex-
tended in the pre-dusk sector. Because of this, there are a fewer
number of events for a given threshold in the pre-dusk sector.

Therefore, low values of may be due to a relative difference
in the number of events where exceeds the threshold.

To eliminate the effect of differing number of events at a given
local time, we can compute as a function of MLT with a
local-time dependent value of chosen so that there are an
equal number of events above for each MLT. Although less
meaningful from a practical standpoint, because absolute am-
plitudes are usually of more interest, such analysis allows com-
parison of the predictability of events that are large with respect
to the local distribution. Fig. 2(b) shows the versus MLT
profile along with the 95 percentile value of . Because this

curve still has a higher peak in the westward electrojet re-
gion, the difference in between the two regions is not due to
differing number of events for a given threshold value.

Fig. 2(b) also contains contingency tables for selected MLT
values. At , the model was most successful at pre-
dicting large excursions in ; of the 30 event forecasts, only
4 were false alarms. At , the model was compara-
tively unsuccessful at predicting relatively large excursions in

; of the 36 event forecasts, only 3 were correct.
In Fig. 3(a), the ratio of correct to false alarm forecasts

is shown for , at three threshold levels,
, 19 nT/min, and 26 nT/min. The curve of

does not have a profile similar to
in Fig. 1(b). In the noon sector, there is a deep minimum in

, while the pre- and post- midnight sectors have high
values. Along with other considerations, [1] interpreted
Fig. 1(b) as showing that the model was capturing primarily
Kelvin-Helmholtz (K-H) driving of in the noon sector
and reconnection driving in the midnight sector. With this in-
terpretation and the result shown in Fig. 3(a), we conclude that

events of a given amplitude driven by reconnection
are more predictable by the model than K-H driven events.
Although the model predicted fluctuations driven by these
processes an equal amount in terms of , the model has a
significantly different prediction performance in terms of
for events driven by these two processes. In Section III, epoch
analysis is used to determine possible reasons for this.

As before, we can test whether the profile of as a func-
tion of MLT is influenced by a differing number of events as a
function of local time by using a local-time dependent value of

chosen so there are an equal number of events above for
each MLT. Fig. 3(b) shows that there is still a large relative dif-
ference between in the noon and the midnight sectors and
thus the difference in between the two regions is not due to
a difference in the number of events for a given threshold value.

III. FAILURE MODE ANALYSIS

A first step in determining the reason for model failure is to
separate the time series by forecast outcome. One unexpected
result of the analysis in Section II is that in the noon sector,

was much smaller than in midnight sector
(Fig. 3). This is in contrast to the fact that these two sectors had
approximately the same [Fig. 1(b)].

To determine possible reasons for this, we have taken the
time series around the time of event forecasts and

created averages for each forecast outcome. Fig. 4 shows these
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Fig. 3. (a) Ratio of the maximum (with respect to S ) number of correct to
false alarm forecasts of a threshold crossing in jdB =dtj above threshold values
corresponding to the 96, 98, and 99th percentiles of the distribution at that local
time. (b) Ratio when the threshold value is chosen to be the 95th percentile value
at a given MLT. To the right of the figures, contingency tables in the format of
Table I are shown for selected local times.

epoch averages for corresponding to the 95th percentile
value at a given MLT. For the averages around the post-mid-
night sector , the model was highly successful,
with 23 hits and 7 false alarms, as was listed in the bottom
contingency table of Fig. 3(b). Fig. 4(a) also shows that the
epoch average of the prediction time series for both hits and
false alarms is similar prior . Note that prior to the event,
the predicted and hit time series are far below the threshold
level. After , the false alarm prediction time series has a
second peak and there is a corresponding rise in the measured
time series; it appears that in these cases, the model is missing
a factor that resulted in the initial suppression of a response.

Fig. 4(b) shows the epoch averages for corresponding to
the 95th percentile value of at . Centered
at this MLT, the model was comparatively unsuccessful, with
4 hits and 29 false alarms, as was listed in the bottom contingency
table of Fig. 3(b). Fig. 4(b) also shows that the epoch average of
the prediction time series for both hits and false alarms. For the
false alarms, the prediction signal only jumped slightly above
the threshold value for a single time interval. In contrast to
Fig. 4(a), prior to , the predictions and the measurements

Fig. 4. Epoch averages of jdB =dtj for forecast outcomes of hit and false
alarm. (a) AtMLT = 2, the epoch averages are similar prior to the event, while
at (b) MLT = 12 events that were missed predictions of threshold crossings
were pre-elevated prior to the actual crossing. Threshold values are shown as
horizontal dashed lines.

hover near the threshold value. From this, we conclude that the
high rate of false alarms is in part a result of the disturbance
not being clearly separated from the threshold level prior to
the event. This was verified by looking at the epoch average
for all events (hits misses). This curve (not shown) has a
similarly flat profile prior to .

IV. SUMMARY AND CONCLUSIONS

A data-derived neural network model, originally developed to
have a high prediction efficiency when predicting values of
and , was analyzed for its ability to predict only large
changes in these quantities. The performance metric used for
event prediction was , ratio of the number of correct fore-
casts to the number of false alarms. It was found that events
in were best predicted in the locations of the eastward- and
westward-electrojets. The profile of was similar to that
of , with the exception that the peak value of was
lower in the eastward than westward-electrojet regions.



1510 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 32, NO. 4, AUGUST 2004

In contrast, analysis of the model showed that its
MLT profile of differed significantly from that of

. The values of were shown to be the highest
in the midnight sector. The noon sector had comparatively low
values of . Using epoch analysis, a possible reason for the
difference was found to be a result of in the noon
sector being both elevated and near the threshold value prior to
an event. In contrast, events levels in the midnight sector tended
to be more separated from the threshold level prior to the event.
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